Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
Detecting Fake Online Reviews using Fine-tuned BERT

Konferenční objektopen accesspeer-reviewedpostprint (accepted version)
Načítá se...
Náhled

Datum

Autoři

Refaeli, David
Hájek, Petr

Název časopisu

ISSN časopisu

Název svazku

Nakladatel

ACM (Association for Computing Machinery)

Výzkumné projekty

Organizační jednotky

Číslo časopisu

Abstrakt

Fake online reviews are becoming a major problem nowadays with the growing number of online purchases. Recently, natural language processing (NLP) methods that analyze the content of reviews have been increasingly used to detect fake reviews. The problem becomes extremely difficult due to the lack of reliable data caused by the difficulty in labeling fake and honest reviews. In this paper, we not only conduct a structural taxonomy of this topic, but we also present extensive experiments using a state-of-the-art language model BERT (Bidirectional Encoder Representations from Transformers) on different online review datasets. By efficiently fine-tuning this model, we outperform existing detection models by achieving 91% accuracy on the balanced crowdsourced dataset of hotel, restaurant, and doctor reviews and 73% accuracy on the imbalanced third-party Yelp dataset of restaurant reviews.

Popis

Klíčová slova

BERT, detection, fake review, fine-tuning

Citace

Permanentní identifikátor

Endorsement

Review

Supplemented By

Referenced By