Publikace: Boscovich Fuzzy Regression Line
Článekopen accesspeer-reviewedpublished versionNačítá se...
Datum
2021
Autoři
Skrabanek, Pavel
Marek, Jaroslav
Pozdílková, Alena
Název časopisu
ISSN časopisu
Název svazku
Nakladatel
MDPI
Abstrakt
We introduce a new fuzzy linear regression method. The method is capable of approximating fuzzy relationships between an independent and a dependent variable. The independent and dependent variables are expected to be a real value and triangular fuzzy numbers, respectively. We demonstrate on twenty datasets that the method is reliable, and it is less sensitive to outliers, compare with possibilistic-based fuzzy regression methods. Unlike other commonly used fuzzy regression methods, the presented method is simple for implementation and it has linear time-complexity. The method guarantees non-negativity of model parameter spreads.
Popis
Klíčová slova
fuzzy linear regression, non-symmetric triangular fuzzy number, method of least absolute deviation, Boscovich regression line, outlier, fuzzy lineární regrese, nesymetrická trojúhelníková fuzzy čísla, metoda nejmenších absolutních odchylek, Boscovićova fuzzy regresní přímka