Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
Hierarchical Intuitionistic TSK Fuzzy System for Bitcoin Price Forecasting

Konferenční objektopen accesspeer-reviewedpostprint
Načítá se...
Náhled

Datum

Autoři

Hájek, Petr
Olej, Vladimír

Název časopisu

ISSN časopisu

Název svazku

Nakladatel

IEEE (Institute of Electrical and Electronics Engineers)

Výzkumné projekty

Organizační jednotky

Číslo časopisu

Abstrakt

There has been great interest in developing hierarchical structures of fuzzy rule-based systems due to their flexibility allowing to model complex problems. To cope with the high degree of uncertainty arising from the characteristics of cryptocurrency markets, this paper proposes a hierarchical intuitionistic TSK (Takagi-Sugeno-Kang) fuzzy system equipped with a feature selection and feature ranking component. The proposed system uses intuitionistic fuzzy sets, allowing to effectively model investor uncertainty in the decision-making on cryptocurrency markets. The hierarchical structure is a parallel tree-like fuzzy system that is based on relevant features while considering feature dependencies. Computational efficiency is achieved by using fuzzy c-means clustering to produce rule antecedents. The proposed system is validated using multivariate bitcoin data for the period 2018 to 2022, showing that the proposed system can accurately predict bitcoin prices while retaining an interpretable hierarchical structure.

Popis

Klíčová slova

bitcoin, forecasting, hierarchical structure, intuitionistic TSK fuzzy system, bitcoin, predikce, hierarchická struktura, intuicionistický TSK fuzzy systém

Citace

Permanentní identifikátor

Endorsement

Review

Supplemented By

Referenced By