Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
Improved and vectorised matlab-based algorithms for serial and parallel implementation of finite element method in linear elasticity

Konferenční objektOmezený přístuppeer-reviewedpostprint
dc.contributor.authorSadjiep Tchuigwa, Baurice Sylvaincze
dc.contributor.authorKrmela, Jancze
dc.contributor.authorPokorný, Jancze
dc.contributor.authorKrmelová, Vladimíracze
dc.date.accessioned2025-10-07T10:03:35Z
dc.date.issued2024eng
dc.description.abstractThis paper presents two improved algorithms for efficient sequential and parallel implementation of the Finite element method (FEM) for both linear and nonlinear boundary value problems. The proposed algorithms address some weak points, such as the overuse of for-loops and serial computing caused by dependencies in constructing fundamental expressions (global stiffness matrix, mass matrix, global force vector, etc.) resulting from the finite element method. By taking advantage of the concepts of sparse matrix representation, vectorization, and the physical architecture of modern computing resources, the proposed methods are free from mesh partitioning techniques or similar approaches and enable the use of all available CPU cores/threads without synchronization. Moreover, these algorithms are also adapted to deal with meshes involving elements of any order in both 2D and 3D. Two tests from NAFEMS benchmarks are implemented in MATLAB to verify the accuracy and stability of the proposed algorithms in both serial and parallel processing. According to serial and parallel computing results, the proposed algorithms perform better than the standard sparse assembly strategy and behave linearly with the mesh size but at a smaller rate than the latter. In parallel processing, the algorithms are also demonstrated to be accurate and achieve an efficiency of at least 60% in 2D and 70% with two cores/threads when the mesh size is greater than 10,000. Moreover, the simulations revealed that the performance gap between the proposed algorithm and the classical sparse algorithm is more pronounced in 2D than in 3D due to the increase in degrees of freedom.eng
dc.description.abstract-translatedTento článek představuje dva vylepšené algoritmy pro efektivní sekvenční a paralelní implementaci metody konečných prvků (MKP) pro lineární i nelineární okrajové úlohy.cze
dc.event23rd International Scientific Conference Engineering for Rural Development, ERDev 2024 (22.05.2024 - 24.05.2024, Jelgava, LV)eng
dc.formatp. 1032-1041eng
dc.identifier.doi10.22616/ERDev.2024.23.TF212eng
dc.identifier.issn1691-3043eng
dc.identifier.obd39890022eng
dc.identifier.scopus2-s2.0-85198422336eng
dc.identifier.urihttps://hdl.handle.net/10195/85998
dc.language.isoengeng
dc.peerreviewedyeseng
dc.project.IDSGS_2024_009/Vybrané výzkumné problémy z oblasti dopravních prostředků a infrastruktury řešené na DFJPeng
dc.publicationstatuspostprinteng
dc.publisherLatvia University of Afgricultureeng
dc.relation.ispartofEngineering for Rural Developmenteng
dc.relation.publisherversionhttps://www.iitf.lbtu.lv/conference/proceedings2024/Papers/TF212.pdfeng
dc.rightsPráce není přístupnáeng
dc.subjectvectorizationeng
dc.subjectsparse algorithmeng
dc.subjectfinite elementeng
dc.subjectparalleleng
dc.subjectMATLABeng
dc.subjectvektorizacecze
dc.subjectprostorový algoritmuscze
dc.subjectkonečný elementcze
dc.subjectparalelnícze
dc.subjectMATLABcze
dc.titleImproved and vectorised matlab-based algorithms for serial and parallel implementation of finite element method in linear elasticityeng
dc.title.alternativeVylepšené a vektorizované algoritmy založené na matlabu pro sériovou a paralelní implementaci metody konečných prvků v lineární elasticitěcze
dc.typeConferenceObjecteng
dspace.entity.typePublication

Soubory

Původní svazek

Nyní se zobrazuje 1 - 1 z 1
Načítá se...
Náhled
Název:
TF212.pdf
Velikost:
976.65 KB
Formát:
Adobe Portable Document Format