Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
Composite Vector Stochastic Processes Model in the Task of Signals' Recognition

Konferenční objektOmezený přístuppeer-reviewedpublished version
dc.contributor.authorChmelařová, Natalijacze
dc.contributor.authorTykhonov, Vyacheslav A.cze
dc.date.accessioned2017-05-11T10:52:02Z
dc.date.available2017-05-11T10:52:02Z
dc.date.issued2016eng
dc.description.abstractThe composite vector stochastic processes model is usable in many signal processing areas. Advantages of the model utilization, in task of electric motors acoustic signals parametric estimations, are shown in this paper. Models' results are compared with the traditional statistical methods for the signal analysis, in the two samples classes recognition task. The expressions for correlation function, autoregressive models' parameters calculation, and parametric power spectral density estimation in autoregressive composite vector stochastic processes representation, are shown in the paper. The proposed method for signals analysis, presented in this paper, enables to obtain information, which is difficult to gain by using traditional methods of statistical analysis.eng
dc.description.abstract-translatedThe composite vector stochastic processes model is usable in many signal processing areas. Advantages of the model utilization, in task of electric motors acoustic signals parametric estimations, are shown in this paper. Models' results are compared with the traditional statistical methods for the signal analysis, in the two samples classes recognition task. The expressions for correlation function, autoregressive models' parameters calculation, and parametric power spectral density estimation in autoregressive composite vector stochastic processes representation, are shown in the paper. The proposed method for signals analysis, presented in this paper, enables to obtain information, which is difficult to gain by using traditional methods of statistical analysis.cze
dc.event26th International Conference RADIOELEKTRONIKA 2016 (19.04.2016 - 20.04.2016)eng
dc.formatp. 203-206eng
dc.identifier.doi10.1109/RADIOELEK.2016.7477402
dc.identifier.isbn978-1-5090-1674-7eng
dc.identifier.issneng
dc.identifier.obd39878108eng
dc.identifier.scopus2-s2.0-84977660423
dc.identifier.urihttps://hdl.handle.net/10195/67345
dc.identifier.wos000383741100042eng
dc.language.isoengeng
dc.peerreviewedyeseng
dc.project.IDSGS_2016_022/Výzkum zpracování rádiových a multimediálních signálůeng
dc.publicationstatuspublished versioneng
dc.publisherIEEE (Institute of Electrical and Electronics Engineers)eng
dc.relation.ispartofRadioelektronika 2016 : conference proceedingseng
dc.relation.publisherversionhttp://ieeexplore.ieee.org/document/7477402/
dc.rightsPouze v rámci univerzityeng
dc.subjectPower spectrum densityeng
dc.subjectSignal's recognitioneng
dc.subjectComposite vector stochastic processeseng
dc.subjectSubvectoreng
dc.subjectCorrelation functioneng
dc.subjectAutoregressive modelseng
dc.subjectPower spectrum densitycze
dc.subjectSignal's recognitioncze
dc.subjectComposite vector stochastic processescze
dc.subjectSubvectorcze
dc.subjectCorrelation functioncze
dc.subjectAutoregressive modelscze
dc.titleComposite Vector Stochastic Processes Model in the Task of Signals' Recognitioneng
dc.title.alternativeComposite Vector Stochastic Processes Model in the Task of Signals' Recognitioncze
dc.typeConferenceObjecteng
dspace.entity.typePublication

Soubory

Původní svazek

Nyní se zobrazuje 1 - 1 z 1
Načítá se...
Náhled
Název:
Composite Vector Stochastic Processes Model.pdf
Velikost:
137.16 KB
Formát:
Adobe Portable Document Format