Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
Composite Vector Stochastic Processes Model in the Task of Signals' Recognition

Konferenční objektOmezený přístuppeer-reviewedpublished version
Načítá se...
Náhled

Datum

Autoři

Chmelařová, Natalija
Tykhonov, Vyacheslav A.

Název časopisu

ISSN časopisu

Název svazku

Nakladatel

IEEE (Institute of Electrical and Electronics Engineers)

Výzkumné projekty

Organizační jednotky

Číslo časopisu

Abstrakt

The composite vector stochastic processes model is usable in many signal processing areas. Advantages of the model utilization, in task of electric motors acoustic signals parametric estimations, are shown in this paper. Models' results are compared with the traditional statistical methods for the signal analysis, in the two samples classes recognition task. The expressions for correlation function, autoregressive models' parameters calculation, and parametric power spectral density estimation in autoregressive composite vector stochastic processes representation, are shown in the paper. The proposed method for signals analysis, presented in this paper, enables to obtain information, which is difficult to gain by using traditional methods of statistical analysis.

Popis

Klíčová slova

Power spectrum density, Signal's recognition, Composite vector stochastic processes, Subvector, Correlation function, Autoregressive models, Power spectrum density, Signal's recognition, Composite vector stochastic processes, Subvector, Correlation function, Autoregressive models

Citace

Permanentní identifikátor

Endorsement

Review

Supplemented By

Referenced By