Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
Speech Emotion Recognition from Earnings Conference Calls in Predicting Corporate Financial Distress

Konferenční objektopen accesspeer-reviewedpostprint (accepted version)
Načítá se...
Náhled

Datum

Autoři

Hájek, Petr

Název časopisu

ISSN časopisu

Název svazku

Nakladatel

Springer Nature Switzerland AG

Výzkumné projekty

Organizační jednotky

Číslo časopisu

Abstrakt

Sentiment and emotion analysis is attracting considerable interest from researchers in the field of finance due to its capacity to provide additional insight into opinions and intentions of investors and managers. A remarkable improvement in predicting corporate financial performance has been achieved by considering textual sentiments. However, little is known about whether managerial affective states influence changes in overall corporate financial performance. To overcome this problem, we propose a deep learning architecture that uses vocal cues extracted from earnings conference calls to detect managerial emotional states and exploits these states to identify firms that could be financially distressed. Our findings provide evidence on the role of managerial emotional states in the early detection of corporate financial distress. We also show that the proposed deep learning-based prediction model outperforms state-of-the-art financial distress prediction models based solely on financial indicators.

Popis

Klíčová slova

speech emotion recognition, financial distress, deep learning, earnings conference calls, rozpoznávání emocí, finanční tíseň, hluboké učení, konferenční hovory

Citace

Permanentní identifikátor

Endorsement

Review

Supplemented By

Referenced By