Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
Usage of Artifical Intelligence and Spectral Analysis for Predicting the Behavior of Stock Prices

Konferenční objektOmezený přístuppeer-reviewedpublished
Načítá se...
Náhled

Datum

Autoři

Pozdílková, Alena
Marek, Jaroslav

Název časopisu

ISSN časopisu

Název svazku

Nakladatel

Spektrum STU

Výzkumné projekty

Organizační jednotky

Číslo časopisu

Abstrakt

In this paper methods of artificial intelligence and spectral analysis to build an algorithm for predicting the behavior of stock prices are applied. Spectral decomposition of a time series was calculated using known methods based on Fourier transformation. The results obtained from periodogram analysis simply provide information about periodicities. Significance analysis was not performed and we worked with four frequencies. This spectral information is then used in clustering of data. Comparison of behavior of price oscillation in clusters was carried out. The presented contribution aims to describe a new algorithm for predicting the behavior of stock prices. The clustering algorithm is based on spectral analysis and SOM. The whole procedure is tested on selected time sections of Dow Jones Industrial Averages, where the algorithm is performed. Results of analysis and final discussion, presented in the Case Study, show that the new method successfully signalizes the trend of stock market prices.

Popis

Klíčová slova

periodogram, spectral analysis, cluster analysis, predicting of Stock Prices, periodogram, spektrální analýza, shluková analýza, predikce cen na burze

Citace

Permanentní identifikátor

Endorsement

Review

Supplemented By

Referenced By