Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
Data Mining v praxi: segmentace zákazníků dle nákupního chování

Článekopen accesspeer-reviewedpublished
dc.contributor.authorPoláčková, Julie
dc.date.accessioned2012-02-29T13:24:46Z
dc.date.available2012-02-29T13:24:46Z
dc.date.issued2011
dc.description.abstractThe paper focuses on the usage of data-mining techniques as a support tool for decision making. This paper describes the mining of hidden and potentially useful information from databases using data mining methods. These methods, sometimes called as techniques for knowledge discovering, help users, mostly managers, to make qualified decisions in the organization. The aim of the process of knowledge management is not only to collect information, but to transform it into knowledge and use it in a decision-making process. The purpose of this paper was to find and evaluate the different methodological approaches appropriate for customer segmentation. Various data mining techniques were used for demonstration of customer segmentation according to their purchasing behavior within a selected hypermarket. The following techniques were used for clustering: K-means clustering method, Two Step clustering method and Self Organizing Maps. The quality of final models was evaluated by Silhouette measure. It combines the principles of clusters separation and cohesion. Data mining model was constructed from approximately 60 thousand transaction records. Only the food records were selected for the analysis. The paper also examined the effect of the number of dimensions to the clustering. The original variables were reduced into a smaller number of uncorrelated principal components. These components were used for construction of a scatter plot to check the homogeneity of clusters. The results of this analysis confirmed that the reduction of dimensionality is an useful device for the evaluation of generated clusters.eng
dc.formatp. 135-145
dc.identifierUniverzitní knihovna (studovna)cze
dc.identifier.issn1211-555X (Print)
dc.identifier.issn1804-8048 (Online)
dc.identifier.signature47940-20
dc.identifier.urihttps://hdl.handle.net/10195/42492
dc.language.isocze
dc.peerreviewedyeseng
dc.publicationstatuspublishedeng
dc.publisherUniverzita Pardubicecze
dc.relation.ispartofScientific papers of the Univerzity of Pardubice. Series D, Faculty of Economics and Administration. 20 (2/2011)eng
dc.subjectdata miningeng
dc.subjectCluster analysiseng
dc.subjectprincipal component analysiseng
dc.subjectcustomer segmentationeng
dc.subjectknowledge discoveringeng
dc.titleData Mining v praxi: segmentace zákazníků dle nákupního chovánícze
dc.typeArticleeng
dspace.entity.typePublication

Soubory

Původní svazek

Nyní se zobrazuje 1 - 1 z 1
Načítá se...
Náhled
Název:
PolackovaJ_DataMining_SP_FES_2011.pdf
Velikost:
863.34 KB
Formát:
Adobe Portable Document Format

Licence svazku

Nyní se zobrazuje 1 - 1 z 1
Načítá se...
Náhled
Název:
license.txt
Velikost:
1.71 KB
Formát:
Item-specific license agreed upon to submission
Popis: