Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
Suitable ASP U-Net training algorithms for grasping point detection of nontrivial objects

Konferenční objektopen accesspeer-reviewedpostprint (accepted version)
Načítá se...
Náhled

Datum

Autoři

Doležel, Petr
Štursa, Dominik
Kopecký, Dušan

Název časopisu

ISSN časopisu

Název svazku

Nakladatel

IEEE (Institute of Electrical and Electronics Engineers)

Výzkumné projekty

Organizační jednotky

Číslo časopisu

Abstrakt

Robotic manipulation with nontrivial or irregular objects, which provide various types of grasping points, is of both academic and industrial interest. Recently, a powerful data-driven ASP U-Net deep neural network has been proposed to detect feasible grasping points of manipulated objects using RGB data. The ASP U-Net showed the ability to detect feasible grasping points with exceptional accuracy and more than acceptable inference times. So far, the network has been trained using an Adam optimizer only. However, in order to optimally utilize the potential of ASP U-Net, it was necessary to perform a systematic investigation of suitable training algorithms. Therefore, the aim of this contribution was to extend the impact of ASP U-Net by recommending suitable training algorithms and their parameters based on the result of training experiments.

Popis

Klíčová slova

ASP U-Net, ASP U-Net

Citace

Permanentní identifikátor

Endorsement

Review

Supplemented By

Referenced By