Publikace: Modelling bank customer behaviour using feature engineering and classification techniques
Článekopen accesspeer-reviewedpublishedNačítá se...
Datum
Autoři
Abedin, Mohammad Zoynul
Hájek, Petr
Sharif, Taimur
Satu, Shahriare
Khan, Imran
Název časopisu
ISSN časopisu
Název svazku
Nakladatel
Elsevier Science BV
Abstrakt
This study investigates customer behaviour and activity in the banking sector and uses various feature transformation techniques to convert the behavioural data into different data structures. Feature selection is then performed to generate feature subsets from the transformed datasets. Several classification methods used in the literature are applied to the original and transformed feature subsets. The proposed combined knowledge mining model enable us to conduct a benchmark study on the prediction of bank customer behaviour. A real bank customer dataset, drawn from 24,000 active and inactive customers, is used for an experimental analysis, which sheds new light on the role of feature engineering in bank customer classification. This paper's detailed systematic analysis of the modelling of bank customer behaviour can help banking institutions take the right steps to increase their customers' activity.
Popis
Klíčová slova
Customer behaviour, Data mining, Feature transformation, Feature selection, Classification techniques, Chování zákazníků, dolování dat, transformace příznaků, výběr příznaků, klasifikační techniky