Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
PREDICTING ABNORMAL STOCK RETURN VOLATILITY USING TEXTUAL ANALYSIS OF NEWS - A META-LEARNING APPROACH

Článekopen accesspeer-reviewedpostprint
Načítá se...
Náhled

Datum

Autoři

Myšková, Renáta
Hájek, Petr
Olej, Vladimír

Název časopisu

ISSN časopisu

Název svazku

Nakladatel

Editura ASE

Výzkumné projekty

Organizační jednotky

Číslo časopisu

Abstrakt

Textual analysis of news articles is increasingly important in predicting stock prices. Previous research has intensively utilized the textual analysis of news and other firm-related documents in volatility prediction models. It has been demonstrated that the news may be related to abnormal stock price behavior subsequent to their dissemination. However, previous studies to date have tended to focus on linear regression methods in predicting volatility. Here, we show that non-linear models can be effectively employed to explain the residual variance of the stock price. Moreover, we use meta-learning approach to simulate the decision-making process of various investors. The results suggest that this approach significantly improves the prediction accuracy of abnormal stock return volatility. The fact that the length of news articles is more important than news sentiment in predicting stock return volatility is another important finding. Notably, we show that Rotation forest performs particularly well in terms of both the accuracy of abnormal stock return volatility and the performance on imbalanced volatility data.

Popis

Klíčová slova

stock return volatility, prediction, textual analysis, sentiment, meta-learning, volatilita výnosu akcií, predikce, textová analýza, sentiment, meta-učení

Citace

Permanentní identifikátor

Endorsement

Review

Supplemented By

Referenced By