Publikace: The Merrifield-Simmons index for the linear octagonal chains
Konferenční objektOmezený přístuppeer-reviewedpostprintNačítá se...
Datum
Autoři
Seibert, Jaroslav
Zahrádka, Jaromír
Název časopisu
ISSN časopisu
Název svazku
Nakladatel
Slovenská technická univezita v Bratislave
Abstrakt
The Merrifield-Simmons index for a simple undirected graph G=(V,E) is given by the number of subsets U of V such that no two vertices in U are adjacent. This number is one of the most popular topological index in chemistry, which was firstly defined and called as the Fibonacci number of a graph. Octagonal chains are cata-condensed systems of octagons and represent a class of polycyclic conjugated hydrocarbons. In this contribution we obtain an exact formula for the Merrifield-Simmons index of linear octagonal chains.
Popis
Klíčová slova
Simple graph, decomposition theorem, difference equation, octagonal chain, linear chain, Merrifield-Simmons index, Jednoduchý graf, dekompoziční věta, diferenční rovnice, oktagonální řetězec, lineární řetězec, Merrifield-Simmonsův index