Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
IMC Strategy Using Neural Networks for 3D Printer Bed Temperature Control

Konferenční objektOmezený přístuppeer-reviewedpostprint
Načítá se...
Náhled

Datum

Autoři

Štursa, Dominik
Havlíček, Libor
Kupka, Libor
Doležel, Petr

Název časopisu

ISSN časopisu

Název svazku

Nakladatel

Springer Nature Switzerland AG

Výzkumné projekty

Organizační jednotky

Číslo časopisu

Abstrakt

In this contribution, the temperature control of the 3D printer heatbed is observed. As the heat exchange power is strictly limited and the thermal process time constants are naturally around tens and hundreds of seconds, these processes are basically slow. The measuring of new data is time consuming, which can cause the profit loss in case of experiments in the production. Moreover, the finding of better control method can lead to significant monetary savings. One of the scopes of this article is to find out if it’s possible to built-up the neural network-based controller system together with the internal model control strategy providing better performance with data obtained in the production, where simply tuned PSD controller was used. The suitable order of the heating system is observed together with the size of the sampling period and neural network topology. The controllability with best performing neural networks is verified on the 3D printer heating bed.

Popis

Klíčová slova

internal model control, 3D printer, řízení s vnitřním modelem, 3D tisk

Citace

Permanentní identifikátor

Endorsement

Review

Supplemented By

Referenced By