Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
Utilization of Machine Learning to Detect Sudden Water Leakage for Smart Water Meter

Konferenční objektopen accesspeer-reviewedpostprint
Načítá se...
Náhled

Datum

Autoři

Fikejz, Jan
Merta, Jan

Název časopisu

ISSN časopisu

Název svazku

Nakladatel

IEEE (Institute of Electrical and Electronics Engineers)

Výzkumné projekty

Organizační jednotky

Číslo časopisu

Abstrakt

This article deals with the use of machine learning to detect sudden water leakage. A smart water meter, which enables monitoring the water consumption of the observed object, is used as the source of input data. Based on these data and their analysis, a symbolic regression, which must know not only the input parameters but also the structure of the model, was finally used to build the model. After finding a suitable function and standard deviation from the model, it is possible to set the required sensitivity and thereby detect anomalous states of water consumption in monitored time windows. Since the smart water meter also has a ball valve, if a sudden water leakage is detected, the water meter can autonomously close the main supply and thus avoid extensive damage.

Popis

Klíčová slova

Smart water meter, water leak, machine learning, symbolic regression, Využití, strojového, učení, pro, detekci, náhlého, úniku, vody, inteligentního, vodoměru

Citace

Permanentní identifikátor

Endorsement

Review

Supplemented By

Referenced By