Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
Topology Optimization of Neural Networks as an Integrated Process in Training with Control Theory Methods

item.dctype.conference paperopen accesspeer-reviewedaccepted
dc.contributor.authorDolezel, Petr
dc.contributor.authorHonc, Daniel
dc.contributor.authorKaramazov, Simeon
dc.contributor.authorStursa, Dominik
dc.contributor.authorRak, Josef
dc.contributor.authorKopecky, Dusan
dc.date.accessioned2025-08-28T09:11:49Z
dc.date.issued2025
dc.description.abstractThe simultaneous optimization of neural network topology and training remains an underexplored research direction, despite its potential to improve model efficiency and performance dynamically. This paper introduces a control-based framework for jointly adjusting the structure and training process of fully connected neural networks. The methodology formulates the training and pruning process as a multivariable dynamic system with two input variables—training process parameters and network architecture adjustments—and two output variables—model performance and computational complexity. A discrete two-dimensional Proportional-Integral-Derivative (PID) controller is employed to regulate these inputs, ensuring a balanced trade-off between accuracy and computational efficiency. The control system is tested on a function approximation task, where a fully connected network is initially set with redundant capacity and gradually optimized according to predefined reference trajectories of performance and complexity. Experimental results demonstrate the effectiveness of the proposed approach, revealing the dynamic interaction between topology and training in realtime network adaptation. The findings highlight the feasibility of integrating control strategies into neural network optimization and pave the way for future research on more advanced controlbased learning architectures.eng
dc.event25th International Conference on Process Control (PC), 3-6 June 2025
dc.identifier.doi10.1109/PC65047.2025.11047318
dc.identifier.isbn979-8-3315-2531-6
dc.identifier.urihttps://hdl.handle.net/10195/85523
dc.language.isoeng
dc.peerreviewedyeseng
dc.project.IDCZ.02.01.01/00/23_021/0008402
dc.project.titleMulti-sector and Interdisciplinary Cooperation in Research and Development of Communication, Information and Detection Technologies for Control and Signalling Systems (CIDET)eng
dc.publicationstatusacceptedeng
dc.publisherIEEE
dc.relation.ispartofProceedings of the 2025 25th International Conference on Process Control, PC 2025eng
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/11047318
dc.rightsopen accesseng
dc.subjectneural network pruningeng
dc.subjecttopology optimizationeng
dc.subjectcontroleng
dc.titleTopology Optimization of Neural Networks as an Integrated Process in Training with Control Theory Methodseng
dc.typeConference Papereng
dspace.entity.typePublication

Soubory

Původní svazek

Nyní se zobrazuje 1 - 1 z 1
Načítá se...
Náhled
Název:
accepted_paper.pdf
Velikost:
419.45 KB
Formát:
Adobe Portable Document Format

Licence svazku

Nyní se zobrazuje 1 - 1 z 1
Načítá se...
Náhled
Název:
license.txt
Velikost:
1.71 KB
Formát:
Item-specific license agreed upon to submission
Popis: