Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
Classification of Degree of Degradation around Scribe for Coil-Coated Metallic Samples Using Convolutional Neural Models

Konferenční objektopen accesspeer-reviewedpostprint
Načítá se...
Náhled

Datum

Název časopisu

ISSN časopisu

Název svazku

Nakladatel

IEEE (Institute of Electrical and Electronics Engineers)

Výzkumné projekty

Organizační jednotky

Číslo časopisu

Abstrakt

Coil coating, a technique for applying organic coatings to rolled metal strip substrates, plays a critical role in achieving consistent, high-quality surface finishes. However, these protective coatings are vulnerable to mechanical damage, which can lead to irreversible alterations when exposed to environmental elements. Traditionally, assessing degradation resistance in coil-coated materials involves manual determination of degraded areas. In this study, a classification-based approach to automate this assessment is proposed. Additionally, the selected classification models are compared with semantic segmentation, highlighting their performance and computational efficiency. The results demonstrate that both approaches (classification and semantic segmentation) can assess degradation, with semantic segmentation providing highly accurate results and classification models offering efficient practical deployment alternatives.

Popis

Klíčová slova

classification, coil coating, deep learning, degradation, delamination, klasifikace, coil coating, deep learning, degradace, delaminace

Citace

Permanentní identifikátor

Endorsement

Review

Supplemented By

Referenced By