Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
Combining rough set-based relevance and redundancy for the ranking and selection of nominal features

Konferenční objektopen accesspeer-reviewedpublished version
Načítá se...
Náhled

Datum

Autoři

Froelich, Wojciech
Hájek, Petr

Název časopisu

ISSN časopisu

Název svazku

Nakladatel

Elsevier Science BV

Výzkumné projekty

Organizační jednotky

Číslo časopisu

Abstrakt

In this paper, we propose a new method for features ranking and selection. Our approach is based on ranking nominal features in terms of their relevance to the assigned class and mutual redundancy with the other features. To calculate the relevance and redundancy, we propose to use a rough-set based approach. After performing the ranking, features filtering is carried out in a supervised way enabling the user to decide on the number of the retained features. The experiments revealed that thanks to our method, it is possible to filter out numerous features describing data while still maintaining satisfactory classification accuracy achieved by the classifier trained using the reduced dataset. The comparative experiments performed with the use of publicly available datasets proved the high efficiency and competitiveness of our approach.

Popis

Klíčová slova

feature ranking, feature selection, rough sets

Citace

Permanentní identifikátor

Endorsement

Review

Supplemented By

Referenced By