Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
Refined Max-Pooling and Unpooling Layers for Deep Convolutional Neural Networks

Konferenční objektOmezený přístuppeer-reviewedpostprint
dc.contributor.authorŠkrabánek, Pavelcze
dc.date.accessioned2017-05-11T10:53:58Z
dc.date.available2017-05-11T10:53:58Z
dc.date.issued2016eng
dc.description.abstractThe main goal of this paper is the introduction of new pooling and unpooling layers suited for deep convolutional neural networks. To this end, a new approximation of max-pooling inversion has been designed. The idea behind this approximation is also introduced in this paper. It is demonstrated on pools of size 2 x 2, with a stride of 2. The widely used technique of switches is combined with interpolation to form the new approximation. For that purpose, an unconventional expression of the switches has been used. Such an expression, allows the right placement of maxima in a reconstruction of original data, as well as interpolation of all unknown values in the reconstruction using the known maxima. The introduced inversion has been implemented into the aforementioned refined pooling and unpooling layers. Since they are suited for deep convolutional networks, behavior of the layers in the feed-forward and backpropagation passes had to be solved. In this context, the introduced conception of the switches has been further developed. Specifically, feed-forward and backpropagation switches are considered in the refined layers. One version of feed-forward and three versions of backpropagation switches have been introduced within this paper. The refined pooling and unpooling layers have been tested on a simple convolutional auto-encoder in order to verify functionality of the conception.eng
dc.description.abstract-translatedPříspěvek prezentuje nové pojetí poolingových a unpoolingových vrstev, které jsou vhodné pro hluboké konvoluční neuronové sítě. Za tímto účelem byla navržena nová aproximace inverzní funkce k funkci max-pooling. Rovněž bylo navrženo nové pojetí přepínačů, které jsou využívány k identifikaci polohy maxima. Koncepce byla testována na jednoduchém konvolučním auto-enkodéru.cze
dc.eventMendel 2016 : 22nd International Conference on Soft Computing (08.06.2016 - 10.06.2016)eng
dc.formatp. 131-142eng
dc.identifier.isbn978-80-214-5365-4eng
dc.identifier.issn1803-3814eng
dc.identifier.obd39878224eng
dc.identifier.scopus2-s2.0-85014926040
dc.identifier.scopus2-s2.0-85014926040
dc.identifier.urihttps://hdl.handle.net/10195/67371
dc.language.isoengeng
dc.peerreviewedyeseng
dc.publicationstatuspostprinteng
dc.publisherVysoké učení technické v Brněeng
dc.relation.ispartofMendel 2016 : 22nd International Conference on Soft Computingeng
dc.rightsPouze v rámci univerzityeng
dc.subjectconvolutional neural network, unpooling, inversion of max-pooling, switches, deep learning, convolutional auto-encodereng
dc.titleRefined Max-Pooling and Unpooling Layers for Deep Convolutional Neural Networkseng
dc.title.alternativeVylepšené max-poolingové a unpoolingové vrstvy pro hluboké konvoluční sítěcze
dc.typeConferenceObjecteng
dspace.entity.typePublication

Soubory

Původní svazek

Nyní se zobrazuje 1 - 1 z 1
Načítá se...
Náhled
Název:
paper.pdf
Velikost:
474.29 KB
Formát:
Adobe Portable Document Format