Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
Speaker Verification Using Autoregressive Spectrum of Speech Signal in Composite Vector Stochastic Processes Model Representation

Článekopen accesspeer-reviewedpostprint
Načítá se...
Náhled

Datum

Autoři

Chmelařová, Natalija
Tykhonov, Vyacheslav A.
Bezruk, Valerij M.
Chmelař, Pavel
Rejfek, Luboš

Název časopisu

ISSN časopisu

Název svazku

Nakladatel

Institute of Mechanics of Continua and Mathematical Sciences

Výzkumné projekty

Organizační jednotky

Číslo časopisu

Abstrakt

This paper deals with the speaker verification system similar to a fingerprint or an eye scanner. For these purpose a long-term words' model and its spectral characteristics were used. The speaker verification method uses the word's sound parametric spectrum factorization in composite vector stochastic process representation based on the multiplicative autoregressive model. The developed method enables to receive the words' features with stable characteristics for the same speaker and differ for different speakers. During the training phase speaker's etalon frequencies has to be estimated for a pronounced word repeated several times. In the verification phase a speaker pronouncing the same word, word's frequencies are estimated and compared with the etalon frequencies database to find the best match or his deny. The results presented in the paper showed the high correct identification probability.

Popis

Klíčová slova

Composite Vector Stochastic Processes Autoregressive Models, Power Spectrum Density, Speaker Verification

Citace

Permanentní identifikátor

Endorsement

Review

Supplemented By

Referenced By