Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
Beyond Sentiment in Stock Price Prediction: Integrating News Sentiment and Investor Attention with Temporal Fusion Transformer

Konferenční objektopen accesspeer-reviewedpostprint
Načítá se...
Náhled

Datum

Název časopisu

ISSN časopisu

Název svazku

Nakladatel

SPRINGER INTERNATIONAL PUBLISHING AG

Výzkumné projekty

Organizační jednotky

Číslo časopisu

Abstrakt

News sentiment is attracting considerable interest in stock market prediction, given its crucial role in shaping stock prices. Previous research has mainly focused on improving prediction accuracy by exploiting news sentiment, without adequately considering the different levels of attention that individual news articles receive. Furthermore, despite the advanced predictive capabilities of deep learning models, there has been a lack of focus on the interpretability of these models, leading to predictions that are not transparent. This study presents an innovative prediction model that integrates a FinBERT-based analysis of news sentiment and investor attention metrics with an attention-based Temporal Fusion Transformer framework. This approach not only enables highly effective forecasting, but also provides insights into the temporal dynamics that influence the stockmarket. The effectiveness of the model is demonstrated by analyzing stock price data for 41 of the largest market capitalization companies over the period 2010 to 2021. The results confirm the superiority of the proposed model over existing deep learning approaches, and the attention analysis underscores the critical role of synthesizing news sentiment and attention metrics in predicting stock prices.

Popis

Klíčová slova

Stock price, News sentiment, News attention, FinBERT, Temporal fusion transformer, Natural language, Cena akcie, Novinový sentiment, Novinová pozornost, FinBERT, TFT, Přirozený jazyk

Citace

Permanentní identifikátor

Endorsement

Review

Supplemented By

Referenced By