Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.
Digitální knihovnaUPCE

Publikace:
Similarity Space and Its Applications

Disertační práceopen access
dc.contributor.advisorMareš, Jan
dc.contributor.authorRozinek, Ondřej
dc.contributor.refereeHorálek, Josef
dc.contributor.refereeKukal, Jaromír
dc.date.accepted2024-06-21
dc.date.accessioned2024-07-08T11:44:53Z
dc.date.available2024-07-08T11:44:53Z
dc.date.issued2024
dc.date.submitted2024-04-26
dc.description.abstractMathematical spaces have been studied for centuries and belong to the basic mathematical theories, which are used in various real-world applications. In general, a mathematical space is a set of mathematical objects with an associated structure. This structure can be specified by a number of operations on the objects of the set. These operations must satisfy certain axioms of mathematical space. Similarity and dissimilarity functions are widely used in many research areas: in information retrieval, data mining, machine learning, cluster analysis and applications in database search, protein sequence comparison and many more. When a dissimilarity function is used, a distance metric is normally required. On the other hand, although similarity functions are used, there is no formally accepted definition of this concept. In this dissertation is used for the first time the novel term similarity space. A significant contribution of this dissertation is the identification of a class of functions that satisfy the axioms of similarity space, alongside the development of novel mathematical theorems and definitions that extend our understanding of similarity. This includes the exploration of duality between similarity and metric spaces, the introduction of normalization transformations that addresses to solution to open unsolved problem, and the establishment of new descriptions and definitions for convergence, continuity, and other fundamental properties within similarity spaces. A significant section is dedicated to developing a new fixed-point theory in similarity space, establishing solutions for differential equations, and introducing a new convergence criterion for the Newton method. Another theoretical contribution is the novel application of similarity space in linear regression. Within the framework of Natural Language Processing (NLP) and Artificial Intelligence (AI), this dissertation applies theoretical insights to address real-world challenges, particularly in the areas of approximate string matching, complex fuzzy record matching and deduplication. By developing a novel convolution-based string matching model, proposing an advanced mathematical model for fuzzy record similarity, and introducing an optimal Q-gram filter for bipartite matching, this research presents novel solutions that significantly improve upon the state-of-the-art methods in terms of efficiency, accuracy, and applicability. In conclusion, this dissertation not only advances the theoretical understanding of similarity spaces but also demonstrates their vast potential for application in data processing and analysis. By bridging the gap between abstract mathematical theory and practical computational challenges, this work lays the groundwork for future innovations across broad range of fields.eng
dc.description.defencePo představení doktoranda Ing. Ondřeje Rozinka byla komise seznámena se stanoviskem školitele k disertační práci a osobě disertanta. Doktorand seznámil komisi se svojí disertační prací formou prezentace. Poté byly předneseny posudky oponentů a doktorand reagoval na připomínky oponentů. V následné veřejné diskusi disertant odpověděl na otázky členů komise, které jsou uvedeny na samostatných listech. Komise posoudila disertační práci a rozhodla, že disertační práce není plagiát. Na závěr proběhlo tajné hlasování. Protokol o výsledcích hlasování je uveden na samostatné příloze.cze
dc.description.departmentFakulta elektrotechniky a informatikycze
dc.description.gradeDokončená práce s úspěšnou obhajoboucze
dc.format177 s.
dc.identifierUniverzitní knihovna (studovna)cze
dc.identifier.signatureD40714
dc.identifier.stag48999
dc.identifier.urihttps://hdl.handle.net/10195/83131
dc.language.isoeng
dc.publisherUniverzita Pardubicecze
dc.rightsbez omezenícze
dc.subjectsimilarity metriceng
dc.subjectsimilarity spaceeng
dc.subjectnormalized similarityeng
dc.subjectedit distanceeng
dc.subjectJaccard coefficienteng
dc.subjectQ-gram filtereng
dc.subjectindexing methodeng
dc.subjectapproximate string matchingeng
dc.subjectrecord linkageeng
dc.subjectentity resolutioneng
dc.subjectrecord deduplicationeng
dc.subjectsimilarity searcheng
dc.subjectsimilarity joineng
dc.subjectlinear regressioneng
dc.subjectfixed pointeng
dc.thesis.degree-disciplineElektrotechnika a informatikacze
dc.thesis.degree-grantorUniverzita Pardubice. Fakulta elektrotechniky a informatikycze
dc.thesis.degree-namePh.D.
dc.thesis.degree-programElektrotechnika a informatikacze
dc.titleSimilarity Space and Its Applicationseng
dc.typedisertační prácecze
dspace.entity.typePublication

Soubory

Původní svazek

Nyní se zobrazuje 1 - 4 z 4
Načítá se...
Náhled
Název:
RozinekO_SimilaritySpace_JM_2024.pdf
Velikost:
6.77 MB
Formát:
Adobe Portable Document Format
Popis:
Plný text práce
Načítá se...
Náhled
Název:
MaresJ_SimilaritySpace_OR_2024.pdf
Velikost:
81.36 KB
Formát:
Adobe Portable Document Format
Popis:
Posudek vedoucího práce
Načítá se...
Náhled
Název:
HoralekJ_SimilaritySpace_OR_2024.pdf
Velikost:
138.37 KB
Formát:
Adobe Portable Document Format
Popis:
Posudek oponenta práce
Načítá se...
Náhled
Název:
KukalJ_SimilaritySpace_OR_2024.pdf
Velikost:
94.03 KB
Formát:
Adobe Portable Document Format
Popis:
Posudek oponenta práce