Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
Integrating sentiment analysis and topic detection in financial news for stock movement prediction

Konferenční objektopen accesspeer-reviewedpostprint
Načítá se...
Náhled

Datum

Autoři

Hájek, Petr
Barushka, Aliaksandr

Název časopisu

ISSN časopisu

Název svazku

Nakladatel

ACM (Association for Computing Machinery)

Výzkumné projekty

Organizační jednotky

Číslo časopisu

Abstrakt

Media-expressed information in financial news are critical for stock market prediction. Nevertheless, researchers have primarily focused on the role of sentiment analysis in predicting stock returns and volatility. Here we show that topics discussed in the financial news may carry additional important information. We use a combination of sentiment analysis (using finance-specific dictionary-based approach) and topic detection (using latent dirichlet allocation) to predict one-day-ahead stock movements of major US companies. The proposed system employs a deep neural network to model complex stock market relations. We demonstrate the effectiveness of this approach compared to baselines, such as support vector machines and sentiment- and topic-based models used separately.

Popis

Klíčová slova

Financial news, Sentiment analysis, Stock movement, Topic detection

Citace

Permanentní identifikátor

Endorsement

Review

Supplemented By

Referenced By