Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
Weight Initialization Possibilities for Feedforward Neural Network with Linear Saturated Activation Functions

Článekopen accesspeer-reviewedpostprint
Načítá se...
Náhled

Datum

Autoři

Doležel, Petr
Škrabánek, Pavel
Gago, Lumír

Název časopisu

ISSN časopisu

Název svazku

Nakladatel

Elsevier Science BV

Výzkumné projekty

Organizační jednotky

Číslo časopisu

Abstrakt

Initial weight choice is an important aspect of the training mechanism for feedforward neural networks. This paper deals with a particular topology of a feedforward neural network, where symmetric linear saturated activation functions are used in a hidden layer. Training of such a topology is a tricky procedure, since the activation functions are not fully differentiable. Thus, a proper initialization method for that case is even more important, than dealing with neural networks with sigmoid activation functions. Therefore, several initialization possibilities are examined and tested here. As a result, particular initialization methods are recommended for application, according to the class of the task to be solved.

Popis

Klíčová slova

artificial neural network, initialization, linear-saturated activation function, linearization, umělá neuronová síť, inicializace, lineární saturovaná aktivační funkce, linearizace

Citace

Permanentní identifikátor

Endorsement

Review

Supplemented By

Referenced By