Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
Comparison of Automatic Classification Methods for Identification of Ice Surfaces from Unmanned-Aerial-Vehicle-Borne RGB Imagery

Článekopen accesspeer-reviewedpublished
Načítá se...
Náhled

Datum

Autoři

Jech, Jakub
Komárková, Jitka
Bhattacharya, Devanjan

Název časopisu

ISSN časopisu

Název svazku

Nakladatel

Výzkumné projekty

Organizační jednotky

Číslo časopisu

Abstrakt

This article describes a comparison of the pixel-based classification methods used to distinguish ice from other land cover types. The article focuses on processing RGB imagery, as these are very easy to obtained. The imagery was taken using UAVs and has a very high spatial resolution. Classical classification methods (ISODATA and Maximum Likelihood) and more modern approaches (support vector machines, random forests, deep learning) have been compared for image data classifications. Input datasets were created from two distinct areas: The Pond Skříň and the Baroch Nature Reserve. The images were classified into two classes: ice and all other land cover types. The accuracy of each classification was verified using a Cohen’s Kappa coefficient, with reference values obtained via manual surface identification. Deep learning and Maximum Likelihood were the best classifiers, with a classification accuracy of over 92% in the first area of interest. On average, the support vector machine was the best classifier for both areas of interest. A comparison of the selected methods, which were applied to highly detailed RGB images obtained with UAVs, demonstrates the potential of their utilization compared to imagery obtained using satellites or aerial technologies for remote sensing.

Popis

Klíčová slova

imagery classification, RGB imagery data, UAV, supervised classification, unsupervised classification, Iso Cluster, Maximum Likelihood, random trees, support vector machine, deep learning, pixel-based classification, klasifikace snímků, RGB obrazová data, UAV, řízená klasifikace, neřízená klasifikace, Iso Cluster, Maximum Likelihood, náhodné stromy, podpůrný vektorový stroj, hluboké učení, pixelová klasifikace

Citace

Permanentní identifikátor

Endorsement

Review

Supplemented By

Referenced By