Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
Product backorder prediction using deep neural network on imbalanced data

Článekopen accesspeer-reviewedpostprint
Načítá se...
Náhled

Datum

2023

Autoři

Shajalal, Md
Hájek, Petr
Abedin, Mohammad Zoynul

Název časopisu

ISSN časopisu

Název svazku

Nakladatel

Taylor & Francis Ltd.

Výzkumné projekty

Organizační jednotky

Číslo časopisu

Abstrakt

Taking backorders on products is a common scenario in inventory and supply chain management systems. The ability to predict the likelihood of backorders can surely minimise a company's losses. Because the number of backorders is much lower than the number of orders that ship on time, applying a predictive model for this domain is a challenging task. This paper proposes a model that uses a deep neural network to predict backorders; it handles the data imbalance between backorders and filled orders with efficient techniques. To make the dataset balanced, we employ different techniques that include minority class weight boosting, randomised oversampling, SMOTE oversampling, and a combination of oversampling and undersampling. The balanced training data are used in our proposed, fully connected deep neural networks model to train the predictive model. The predictive model learns the likelihood of product backorders by using the training samples. We conduct experiments on a large benchmark dataset to test the performance of our proposed deep neural network-based model. The experimental results achieve a new state-of-the-art performance and outperform some prominent classification models in terms of standard evaluation metrics and expected profit measure.

Popis

Klíčová slova

Product backorder, deep neural network, synthetic oversampling, imbalanced data, prediction, Zpětné objednání produktu, hluboká neuronová síť, syntetické převzorkování, nevyvážená data, predikce

Citace

Permanentní identifikátor

Endorsement

Review

Supplemented By

Referenced By