Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
RGB images-driven recognition of grapevine varieties using a densely connected convolutional network

Článekopen accesspeer-reviewedpostprint (accepted)
Načítá se...
Náhled

Datum

Autoři

Škrabánek, Pavel
Doležel, Petr
Matousek, Radomil

Název časopisu

ISSN časopisu

Název svazku

Nakladatel

Oxford University Press

Výzkumné projekty

Organizační jednotky

Číslo časopisu

Abstrakt

We present a pocket-size densely connected convolutional network (DenseNet) directed to classification of size-normalized colour images according to varieties of grapes captured in those images. We compare the DenseNet with three established small-size networks in terms of performance, inference time and model size. We propose a data augmentation that we use in training the networks. We train and evaluate the networks on in-field images. The trained networks distinguish between seven grapevine varieties and background, where four and three varieties, respectively, are of red and green grapes. Compared to the established networks, the DenseNet is characterized by near state-of-the-art performance, short inference time and minimal model size. All these aspects qualify the network for real-time, mobile and edge computing applications. The DenseNet opens possibilities for constructing affordable selective harvesters in accordance with agriculture 4.0.

Popis

Klíčová slova

recognition of grapevine varieties, densely connected convolutional network, data augmentation, in-field images, edge-computing, agricultural mechanization, rozpoznávání odrůd vinné révy, hustě propojená konvoluční síť, rozšiřování dat, snímky z pole, edge-computing, zemědělská mechanizace

Citace

Permanentní identifikátor

Endorsement

Review

Supplemented By

Referenced By