Publikace: Comparative Analysis of Modern Methods for Surface Type Identification in RGB Image Data
Konferenční objektOmezený přístuppeer-reviewedpostprintNačítá se...
Datum
Autoři
Název časopisu
ISSN časopisu
Název svazku
Nakladatel
IEEE (Institute of Electrical and Electronics Engineers)
Abstrakt
The rapid development of drone technology and deep learning algorithms also expands the possibilities of environmental monitoring, e.g., the search and management of water bodies. This study aims to harness these advances for the accurate identification of surface types, with a specific focus on water bodies, in RGB image data. Using a dataset comprised of aerial images captured over the Baroch Pond within a nature reserve in the Czech Republic, this study comparative to evaluate the performance of deep learning models, including U-Net, Pyramid Scene Parsing Network (PSPNet), and DeepLabV3, in classifying surface types. The classification accuracy is slightly over 90% for most deep learning algorithms. These results show the potential of deep learning in this area. And this is key for a number of interested parties, for example, state administration, water resource managers, farmers, and tourism industry.
Popis
Klíčová slova
Surface Type Identification, RGB Image Data, Image Processing Techniques, Deep Learning Algorithms, Pattern Recognition, Very High Spatial Resolution, Identifikace typu povrchu, Obrazová data RGB, Techniky zpracování obrazu, Algoritmy hlubokého učení, Rozpoznávání vzorů, Velmi vysoké prostorové rozlišení