Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
Artificial Neural Networks for Pyrolysis, Thermal Analysis, and Thermokinetic Studies: The Status Quo

Článekopen accesspeer-reviewedpublished version
Načítá se...
Náhled

Datum

Autoři

Muravyev, Nikita V
Luciano, Giorgio
Ornaghi, Heitor Luiz, Jr
Svoboda, Roman
Vyazovkin, Sergey

Název časopisu

ISSN časopisu

Název svazku

Nakladatel

MDPI

Výzkumné projekty

Organizační jednotky

Číslo časopisu

Abstrakt

Artificial neural networks (ANNs) are a method of machine learning (ML) that is now widely used in physics, chemistry, and material science. ANN can learn from data to identify nonlinear trends and give accurate predictions. ML methods, and ANNs in particular, have already demonstrated their worth in solving various chemical engineering problems, but applications in pyrolysis, thermal analysis, and, especially, thermokinetic studies are still in an initiatory stage. The present article gives a critical overview and summary of the available literature on applying ANNs in the field of pyrolysis, thermal analysis, and thermokinetic studies. More than 100 papers from these research areas are surveyed. Some approaches from the broad field of chemical engineering are discussed as the venues for possible transfer to the field of pyrolysis and thermal analysis studies in general. It is stressed that the current thermokinetic applications of ANNs are yet to evolve significantly to reach the capabilities of the existing isoconversional and model-fitting methods.

Popis

Klíčová slova

artificial neural networks, conversion degree, kinetics, machine learning, pyrolysis, thermal analysis, umělá neurální síť, stupeň konverze, kinetika, strojové učení, pyrolýza, termická analýza

Citace

Permanentní identifikátor

Endorsement

Review

Supplemented By

Referenced By