Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
Convolutional neural networks in hand-based recognition system

Konferenční objektOmezený přístuppeer-reviewedpostprint
Načítá se...
Náhled

Datum

Autoři

Příhodová, Kateřina

Název časopisu

ISSN časopisu

Název svazku

Nakladatel

International Business Information Management Association-IBIMA

Výzkumné projekty

Organizační jednotky

Číslo časopisu

Abstrakt

Biometric systems are often discussed today. Authentication systems that work with biometric data (such as fingerprint, iris, hand geometry) have a high level of security. There are many reasons why it is necessary to have a strong authentication system. One of them is the existence of information systems that store sensitive data that needs to be protected. This article is focused on hand-based identification systems. A typical hand-based authentication system performs: data acquisition, feature extraction, classification, and decision. This paper presents the use of a convolutional neural network to identify people based on hand geometry. Convolutional neural networks are used for pattern recognition. When using a convolutional neural network, it is not necessary before classification feature extraction. Experiments were performed on a database of 550 hand images from 114 people, each person provided 5 images. The accuracy of the identification of persons was 94.11%, 3 images of each person were used for training.

Popis

Klíčová slova

biometrics, pattern recognition, classification, convolutional neural networks, biometrie, rozpoznávání vzoru, klasifikace, konvoluční neuronové sítě

Citace

Permanentní identifikátor

Endorsement

Review

Supplemented By

Referenced By