Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
Neural networks applied in kinetic analysis of complex nucleation-growth processes: Outstanding solution for fully overlapping reaction mechanisms

ČlánekOmezený přístuppeer-reviewedpublished
Načítá se...
Náhled

Datum

Autoři

Liland, K.H.
Svoboda, Roman
Luciano, G.
Muravyev, N.

Název časopisu

ISSN časopisu

Název svazku

Nakladatel

Elsevier Science BV

Výzkumné projekty

Organizační jednotky

Číslo časopisu

Abstrakt

Performance of several neural network architectures (convolutional neural network CNN, multilayer perceptron MLP, CNN/MLP hybrid CDD) was evaluated for kinetic analysis of complex processes with overlapping independent reaction mechanisms based on the nucleation-growth Johnson-Mehl-Avrami (JMA) model. Theoretically simulated data used for the testing covered absolute majority of real-life JMA-JMA solid-state kinetics scenarios. The performance of the tested architectures decreased in the following order: MLP > CDD >> CNN. For partially overlapping processes the CDD and MLP architectures provided accurate estimates of the JMA model kinetic parameters, performing on par with traditional methods of kinetic analysis. For the fully overlapping kinetic processes, the accuracy of the estimates provided by the neural networks significantly worsened, however still largely outperforming the traditional approaches of kinetic analysis based on the standard non-linear optimization, such as mathematic or kinetic deconvolution. The corresponding kinetic predictions were of suitable precision for majority of real-life applications preparation (glass-ceramics).

Popis

Klíčová slova

CDD, complex process, JMA model, MLP, theoretical kinetic analysis, CDD, komplexní proces, JMA model, MLP, teoretická kinetická analýza

Citace

Permanentní identifikátor

Endorsement

Review

Supplemented By

Referenced By