Publikace: Possibilities of Piecewise-Linear Neural Network Training Using Levenberg-Marquardt Algorithm and Hybrid Differential Evolution
Konferenční objektOmezený přístuppeer-reviewedpostprintNačítá se...
Soubory
Datum
Autoři
Gago, Lumír
Doležel, Petr
Název časopisu
ISSN časopisu
Název svazku
Nakladatel
Vysoké učení technické v Brně
Abstrakt
This article is focused on the comparison of the learning of an artificial neural network with a hyperbolic tangent activation function and an artificial neural network with a linear saturated activation function in hidden layers. The learning is performed by a Levenberg-Marquardt algorithm and hybrid differential evolution. For evaluating of learning characteristics, there is calculated a comprehensive set of statistical variables. The results are analysed and shown as a table for each experiment. An empirical result discussed at the end of the paper is, that the approximation qualities of both networks under examination are similar.
Popis
Klíčová slova
artificial neural network, activation function, Levenberg-Marquardt algorithm, differential evolution., umělá neuronová síť, aktivační funkce, Levenbergův-Marquardtův algoritmus, diferenciální evoluce