Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
Memory Efficient Grasping Point Detection of Nontrivial Objects

Článekopen accesspeer-reviewedpublished version
Načítá se...
Náhled

Datum

Autoři

Doležel, Petr
Štursa, Dominik
Kopecký, Dušan
Jecha, Jiří

Název časopisu

ISSN časopisu

Název svazku

Nakladatel

IEEE (Institute of Electrical and Electronics Engineers)

Výzkumné projekty

Organizační jednotky

Číslo časopisu

Abstrakt

Robotic manipulation with a nontrivial object providing various types of grasping points is of an industrial interest. Here, an efficient method of simultaneous detection of the grasping points is proposed. Specifically, two different 3 degree-of-freedom end effectors are considered for simultaneous grasping. The method utilizes an RGB data-driven perception system based on a specifically designed fully convolutional neural network called attention squeeze parallel U-Net (ASP U-Net). ASP U-Net detects grasping points based on a single RGB image. This image is transformed into a schematic grayscale frame, where the positions and poses of the grasping points are coded into gradient geometric shapes. In order to approve the ASP U-Net architecture, its performance was compared with nine competitive architectures using metrics based on generalized intersection over union and mean absolute error. The results indicate its outstanding accuracy and response time. ASP U-Net is also computationally efficient enough. With a more than acceptable memory size (77 MB), the architecture can be implemented using custom single-board computers. Here, its capabilities were tested and evaluated on the NVIDIA Jetson NANO platform.

Popis

Klíčová slova

grasping, service robots, end effectors, grippers, three-dimensional displays, convolutional neural networks, computer architecture, robotic grasping, grasping point detection, machine vision, deep learning, convolutional neural network, uchopování, servisní roboty, koncové efektory, chapadla, trojrozměrné displeje, konvoluční neuronové sítě, počítačová architektura, robotické uchopování, detekce bodu uchopení, strojové vidění, hluboké učení, konvoluční neuronová síť

Citace

Permanentní identifikátor

Endorsement

Review

Supplemented By

Referenced By