Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
Grasping Point Detection Using Monocular Camera Image Processing and Knowledge of Center of Gravity

Konferenční objektopen accesspeer-reviewedpostprint (accepted version)
Načítá se...
Náhled

Datum

Autoři

Štursa, Dominik
Doležel, Petr
Honc, Daniel

Název časopisu

ISSN časopisu

Název svazku

Nakladatel

Springer Nature Switzerland AG

Výzkumné projekty

Organizační jednotky

Číslo časopisu

Abstrakt

The ability to grasp objects is one of the basic functions of modern industrial robots. In this article, the focus is placed on a system for processing the image provided by a robot visual perception system leading to the detection of objects grasping points. The proposed processing system is based on a multi-step method using convolutional neural networks (CNN). The first step is to use the first CNN to transform the input image into a schematic image with labeled objects centers of gravity, which then serves as a supporting input to the second CNN. In this second CNN, original input and supporting input images are used to obtain a schematic image containing the grasping points of the objects. This solution is further compared with a network providing grasping points directly from the input image. As a result, the proposed method provided a 0.7% improvement in the average intersection over union for all of the models.

Popis

Klíčová slova

image processing, grasping point detection, convolutional neural network, center of gravity

Citace

Permanentní identifikátor

Endorsement

Review

Supplemented By

Referenced By