Publikace: ECG Hearbeat Classification Based on Multi-scale Convolutional Neural Networks
Konferenční objektopen accesspeer-reviewedpostprintNačítá se...
Datum
Autoři
Rozinek, Ondřej
Doležel, Petr
Název časopisu
ISSN časopisu
Název svazku
Nakladatel
Springer Nature Switzerland AG
Abstrakt
Clinical applications require automating ECG signal processing and classification. This paper investigates the impact of multiscale input filtering techniques and feature map blocks on the performance of CNN models for ECG classification. We conducted an ablation study using the AbnormalHeartbeat dataset, with 606 instances of ECG time series divided into five classes. We compared five multiscale input filtering techniques and four multiscale feature map blocks against a base model and non-multiscale input. Results showed that the combination of mean filter for multiscale input and residual connections for multiscale block achieved the highest accuracy of 64.47%. Residual connections were consistently effective across different filtering techniques, highlighting their potential to enhance CNN model performance for ECG classification. These findings can guide the design of future CNN models for ECG classification tasks, with further experimentation needed for optimal combinations in specific applications.
Popis
Klíčová slova
ECG classification, deep learning, multiscale CNN, convolutional neural networks, Klasifikace EKG, hluboké učení, víceměřítkové CNN, konvoluční neuronové sítě