Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
ECG Hearbeat Classification Based on Multi-scale Convolutional Neural Networks

Konferenční objektopen accesspeer-reviewedpostprint
Načítá se...
Náhled

Datum

Autoři

Rozinek, Ondřej
Doležel, Petr

Název časopisu

ISSN časopisu

Název svazku

Nakladatel

Springer Nature Switzerland AG

Výzkumné projekty

Organizační jednotky

Číslo časopisu

Abstrakt

Clinical applications require automating ECG signal processing and classification. This paper investigates the impact of multiscale input filtering techniques and feature map blocks on the performance of CNN models for ECG classification. We conducted an ablation study using the AbnormalHeartbeat dataset, with 606 instances of ECG time series divided into five classes. We compared five multiscale input filtering techniques and four multiscale feature map blocks against a base model and non-multiscale input. Results showed that the combination of mean filter for multiscale input and residual connections for multiscale block achieved the highest accuracy of 64.47%. Residual connections were consistently effective across different filtering techniques, highlighting their potential to enhance CNN model performance for ECG classification. These findings can guide the design of future CNN models for ECG classification tasks, with further experimentation needed for optimal combinations in specific applications.

Popis

Klíčová slova

ECG classification, deep learning, multiscale CNN, convolutional neural networks, Klasifikace EKG, hluboké učení, víceměřítkové CNN, konvoluční neuronové sítě

Citace

Permanentní identifikátor

Endorsement

Review

Supplemented By

Referenced By