Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
Interval-Valued Fuzzy Cognitive Maps with Genetic Learning for Predicting Corporate Financial Distress

Článekopen accesspeer-reviewedpostprint
Načítá se...
Náhled

Datum

Autoři

Hájek, Petr
Procházka, Ondřej

Název časopisu

ISSN časopisu

Název svazku

Nakladatel

University of Niš

Výzkumné projekty

Organizační jednotky

Číslo časopisu

Abstrakt

Fuzzy cognitive maps (FCMs) integrate neural networks and fuzzy logic to model complex nonlinear problems through causal reasoning. Interval-valued FCMs (IVFCMs) have recently been proposed to model additional uncertainty in decision-making tasks with complex causal relationships. In traditional FCMs, optimization algorithms are used to learn the strengths of the relationships from the data. Here, we propose a novel IVFCM with real-coded genetic learning. We demonstrate that the proposed method is effective for predicting corporate financial distress based on causally connected financial concepts. Specifically, we show that this method outperforms FCMs, fuzzy grey cognitive maps and adaptive neuro-fuzzy systems in terms of root mean squared error.

Popis

Klíčová slova

Interval-valued fuzzy cognitive map, Genetic algorithm, Finance

Citace

Permanentní identifikátor

Endorsement

Review

Supplemented By

Referenced By