Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
Forecasting Sub-Sovereign Credit Ratings using Machine Learning Methods

Konferenční objektOmezený přístuppeer-reviewedpostprint
Načítá se...
Náhled

Datum

Autoři

Toseafa, Evelyn

Název časopisu

ISSN časopisu

Název svazku

Nakladatel

International Business Information Management Association-IBIMA

Výzkumné projekty

Organizační jednotky

Číslo časopisu

Abstrakt

This paper mainly analyses the forecasting of sub-sovereign credit ratings using machine learning methods in the non-US, Europe and other regional and sub-sovereign ratings. Specific focus is based on developing an accurate forecasting model based on machine learning. We examine its forecasting accuracy on two forecasting horizons, one and two years ahead. The study was designed to determine the cost sensitivity of various machine learning methods and to develop an accurate decision-support system that minimize the cost of credit rating classification for sub-sovereign entities across countries and world regions. We looked at each side of the economic, financial and debt and budget, revenues and expenditures, to provide sufficient inputs for the machine learning models. The analyses is to consider the ordinal character of the rating classes, classification cost (cost-sensitive) which is used as objective function, in assessing credit ratings and evaluating of bonds i.e. regional credit rating modelling.

Popis

Klíčová slova

rating model, sub-sovereign, credit risk, credit rating, machine learning, ratingový model, úvěrové riziko, úvěrový rating, strojové učení

Citace

Permanentní identifikátor

Endorsement

Review

Supplemented By

Referenced By