Publikace: The Duality of Similarity and Metric Spaces
Článekopen accesspeer-reviewedpublished versionNačítá se...
Datum
Autoři
Rozinek, Ondřej
Mareš, Jan
Název časopisu
ISSN časopisu
Název svazku
Nakladatel
MDPI
Abstrakt
We introduce a new mathematical basis for similarity space. For the first time, we describe the relationship between distance and similarity from set theory. Then, we derive generally valid relations for the conversion between similarity and a metric and vice versa. We present a general solution for the normalization of a given similarity space or metric space. The derived solutions lead to many already used similarity and distance functions, and combine them into a unified theory. The Jaccard coefficient, Tanimoto coefficient, Steinhaus distance, Ruzicka similarity, Gaussian similarity, edit distance and edit similarity satisfy this relationship, which verifies our fundamental theory.
Popis
Klíčová slova
similarity metric, similarity space, distance metric, metric space, normalized similarity metric, normalized distance metric, edit distance, edit similarity, Jaccard coefficient, Gaussian similarity, metrika podobnosti, prostor podobnosti, metrika vzdálenosti, metrický prostor, normalizovaná metrika podobnosti, normalizovaná metrika vzdálenosti, editační vzdálenost, editační podobnost, Jaccardův koeficient, Gaussova podobnost