Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
Interpretable Fuzzy Rule-Based Systems for Detecting Financial Statement Fraud

Konferenční objektopen accesspeer-reviewedpostprint
Načítá se...
Náhled

Datum

Autoři

Hájek, Petr

Název časopisu

ISSN časopisu

Název svazku

Nakladatel

Springer

Výzkumné projekty

Organizační jednotky

Číslo časopisu

Abstrakt

Systems for detecting financial statement frauds have attracted considerable interest in computational intelligence research. Diverse classification methods have been employed to perform automatic detection of fraudulent companies. However, previous research has aimed to develop highly accurate detection systems, while neglecting the interpretability of those systems. Here we propose a novel fuzzy rule-based detection system that integrates a feature selection component and rule extraction to achieve a highly interpretable system in terms of rule complexity and granularity. Specifically, we use a genetic feature selection to remove irrelevant attributes and then we perform a comparative analysis of state-of-the-art fuzzy rule-based systems, including FURIA and evolutionary fuzzy rule-based systems. Here, we show that using such systems leads not only to competitive accuracy but also to desirable interpretability. This finding has important implications for auditors and other users of the detection systems of financial statement fraud.

Popis

Klíčová slova

Evolutionary algorithms, Financial statement fraud, Fuzzy rule-based systems, Interpretability, Evoluční algoritmy, podvod s finančními výkazy, fuzzy pravidlový systém, interpretovatelnost

Citace

Permanentní identifikátor

Endorsement

Review

Supplemented By

Referenced By