Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
Predicting Abnormal Bank Stock Returns Using Textual Analysis of Annual Reports – A Neural Network Approach

Konferenční objektOmezený přístuppeer-reviewedpostprint
Načítá se...
Náhled

Datum

Autoři

Hájek, Petr
Boháčová, Jana

Název časopisu

ISSN časopisu

Název svazku

Nakladatel

Springer

Výzkumné projekty

Organizační jednotky

Číslo časopisu

Abstrakt

This paper aims to extract both sentiment and bag-of-words information from the annual reports of U.S. banks. The sentiment analysis is based on two commonly used finance-specific dictionaries, while the bag-of-words are selected according to their tf-idf. We combine these features with financial indicators to predict abnormal bank stock returns using a neural network with dropout regularization and rectified linear units. We show that this method outperforms other machine learning algorithms (Naïve Bayes, Support Vector Machine, C4.5 decision tree, and k-nearest neighbour classifier) in predicting positive/negative abnormal stock returns. Thus, this neural network seems to be well suited for text classification tasks working with sparse high-dimensional data. We also show that the quality of the prediction significantly increased when using the combination of financial indicators and bigrams and trigrams, respectively.

Popis

Klíčová slova

Stock return, Prediction, Text mining, Sentiment, Neural network, Výnos akcie, predikce, text mining, sentiment, neuronová síť

Citace

Permanentní identifikátor

Endorsement

Review

Supplemented By

Referenced By