Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
Tax default prediction using feature transformation-based machine learning

Článekopen accesspeer-reviewedpublished version
Načítá se...
Náhled

Datum

Autoři

Abedin, Mohammad Zoynul
Chi, Guotai
Uddin, Mohammed Mohi
Satu, Md Shahriare
Khan, Imran
Hájek, Petr

Název časopisu

ISSN časopisu

Název svazku

Nakladatel

IEEE (Institute of Electrical and Electronics Engineers)

Výzkumné projekty

Organizační jednotky

Číslo časopisu

Abstrakt

This study proposes to address the economic significance of unpaid taxes by using an automatic system for predicting a tax default. Too little attention has been paid to tax default prediction in the past. Moreover, existing approaches tend to apply conventional statistical methods rather than advanced data analytic approaches, including state-of-the-art machine learning methods. Therefore, existing studies cannot effectively detect tax default information in real-world financial data because they fail to take into account the appropriate data transformations and nonlinear relationships between early-warning financial indicators and tax default behavior. To overcome these problems, this study applies diverse feature transformation techniques and state-of-the-art machine learning approaches. The proposed prediction system is validated by using a dataset showing tax defaults and non-defaults at Finnish limited liability firms. Our findings provide evidence for a major role of feature transformation, such as logarithmic and square-root transformation, in improving the performance of tax default prediction. We also show that extreme gradient boosting and the systematically developed forest of multiple decision trees outperform other machine learning methods in terms of accuracy and other classification performance measures. We show that the equity ratio, liquidity ratio, and debt-to-sales ratio are the most important indicators of tax defaults for 1-year-ahead predictions. Therefore, this study highlights the essential role of well-designed tax default prediction systems, which require a combination of feature transformation and machine learning methods. The effective implementation of an automatic tax default prediction system has important implications for tax administration and can assist administrators in achieving feasible government expenditure allocations and revenue expansions.

Popis

Klíčová slova

finance, data analysis, machine learning, predictive models, feature extraction, economics, support vector machines, default prediction, corporate tax, machine learning, feature transformation

Citace

Permanentní identifikátor

Endorsement

Review

Supplemented By

Referenced By