Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
Fake review detection in e-Commerce platforms using aspect-based sentiment analysis

ČlánekEmbargopeer-reviewedpostprint
Načítá se...
Náhled

Datum

Autoři

Hájek, Petr
Hikkerova, Lubica
Sahut, Jean-Michel

Název časopisu

ISSN časopisu

Název svazku

Nakladatel

Elsevier Science Inc.

Výzkumné projekty

Organizační jednotky

Číslo časopisu

Abstrakt

Consumers rely on internet user reviews. Existing sentiment-based detection systems fail to capture consumer feelings regarding numerous aspects of products or services which influence their purchasing decisions. Despite the growing interest in detecting false reviews, prior studies have not explored the capacity to detect fake reviews for diverse products, which require distinct consumer experience. To overcome these problems, this paper proposes a fake review detection model using aspect-based sentiment analysis (ABSA) while considering the effects of product types. Using a dataset of Amazon reviews, our ABSA model revealed that two aspects are fundamental for detecting fake reviews and suggests the need to associate the two. These are the product category and the verified purchase attribute (with the greatest contribution observed for credence and experience product types).

Popis

Klíčová slova

Online review, Detection, Fake review, Sentiment, Aspect, Online platform, Online recenze, Detekce, Falešná recenze, Sentiment, Aspekt, Online platforma

Citace

Permanentní identifikátor

Endorsement

Review

Supplemented By

Referenced By