Publikace: Utilization of UAV-Borne RGB Data for Monitoring Horses: Comparison of Classification Methods
Konferenční objektopen accesspeer-reviewedpostprintNačítá se...
Datum
Autoři
Jech, Jakub
Komárková, Jitka
Sedlák, Pavel
Krátký, Martin
Název časopisu
ISSN časopisu
Název svazku
Nakladatel
IEEE (Institute of Electrical and Electronics Engineers)
Abstrakt
The paper describes utilizing remotely sensed RGB data to support monitoring horses in a natural environment on demand. Data are sensed using an unmanned aerial vehicle (UAV). UAVs provide very high spatial resolution data sensed at a low altitude on demand. Sensing is limited by weather conditions and legal rules only. Terrain does not need to be accessible. The paper provides a comparison of several pixel-based and object-based classification methods, namely Maximum Likelihood, Random Trees, SVM, and K-NN. Manual classification is used as a reference method.
Popis
Klíčová slova
imagery, live animals monitoring, object-based classification, pixel-based classification, UAV, obrazová data, sledování živých zvířat, objektová klasifikace, pixelová klasifikace, UAV