Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
Spam filtering in social networks using regularized deep neural networks with ensemble learning

Konferenční objektopen accesspeer-reviewedpostprint
Načítá se...
Náhled

Datum

Autoři

Barushka, Aliaksandr
Hájek, Petr

Název časopisu

ISSN časopisu

Název svazku

Nakladatel

Springer

Výzkumné projekty

Organizační jednotky

Číslo časopisu

Abstrakt

Spam filtering in social networks is increasingly important owing to the rapid growth of social network user base. Sophisticated spam filters must be developed to deal with this complex problem. Traditional machine learning approaches such as neural networks, support vector machine and Naïve Bayes classifiers are not effective enough to process and utilize complex features present in high-dimensional data on social network spam. To overcome this problem, here we propose a novel approach to social network spam filtering. The approach uses ensemble learning techniques with regularized deep neural networks as base learners. We demonstrate that this approach is effective for social network spam filtering on a benchmark dataset in terms of accuracy and area under ROC. In addition, solid performance is achieved in terms of false negative and false positive rates. We also show that the proposed approach outperforms other popular algorithms used in spam filtering, such as decision trees, Naïve Bayes, artificial immune systems, support vector machines, etc.

Popis

Klíčová slova

Meta-learning, Neural network, Regularization, Social networks

Citace

Permanentní identifikátor

Endorsement

Review

Supplemented By

Referenced By