Publikace: The Sierpiński triangle and its coordinate functions
Článekopen accesspeer-reviewedpublished| dc.contributor.author | Koudela, Libor | |
| dc.date.accessioned | 2011-05-05T08:25:26Z | |
| dc.date.available | 2011-05-05T08:25:26Z | |
| dc.date.issued | 2010 | |
| dc.description.abstract | The famous fractal set called the Sierpiński triangle was introduced as a plane curve every point of which is the point of ramification. Since it satisfies the Jordan definition of a curve, it can be represented by two continuous coordinate functions of a parameter. The coordinate functions are constructed by iterations of a system of linear transformations in the complex plane. | eng |
| dc.format | p. 108-112 | eng |
| dc.identifier | Univerzitní knihovna (studovna) | cze |
| dc.identifier.issn | 1211 – 555X | |
| dc.identifier.uri | https://hdl.handle.net/10195/38485 | |
| dc.language.iso | eng | |
| dc.peerreviewed | yes | eng |
| dc.publicationstatus | published | eng |
| dc.publisher | Univerzita Pardubice | cze |
| dc.relation.ispartof | Scientific papers of the University of Pardubice. Series D, Faculty of Economics and Administration. 17 (2/2010) | eng |
| dc.subject | Sierpiński triangle | eng |
| dc.subject | Jordan curve | eng |
| dc.subject | fractals | eng |
| dc.title | The Sierpiński triangle and its coordinate functions | eng |
| dc.type | Article | eng |
| dspace.entity.type | Publication |
Soubory
Původní svazek
1 - 1 z 1
Načítá se...
- Název:
- KoudelaL_TheSierpinski_2010.pdf
- Velikost:
- 83.49 KB
- Formát:
- Adobe Portable Document Format
Licence svazku
1 - 1 z 1
Načítá se...
- Název:
- license.txt
- Velikost:
- 1.71 KB
- Formát:
- Item-specific license agreed upon to submission
- Popis: