Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
Spam Filtering Using Regularized Neural Networks with Rectified Linear Units

Konferenční objektOmezený přístuppeer-reviewedpostprint
Načítá se...
Náhled

Datum

Autoři

Barushka, Aliaksandr
Hájek, Petr

Název časopisu

ISSN časopisu

Název svazku

Nakladatel

Springer

Výzkumné projekty

Organizační jednotky

Číslo časopisu

Abstrakt

The rapid growth of unsolicited and unwanted messages has inspired the development of many anti-spam methods. Machine-learning methods such as Naïve Bayes (NB), support vector machines (SVMs) or neural networks (NNs) have been particularly effective in categorizing spam /non-spam messages. They automatically construct word lists and their weights usually in a bag-of-words fashion. However, traditional multilayer perceptron (MLP) NNs usually suffer from slow optimization convergence to a poor local minimum and overfitting issues. To overcome this problem, we use a regularized NN with rectified linear units (RANN-ReL) for spam filtering. We compare its performance on three benchmark spam datasets (Enron, SpamAssassin, and SMS spam collection) with four machine algorithms commonly used in text classification, namely NB, SVM, MLP, and k-NN. We show that the RANN-ReL outperforms other methods in terms of classification accuracy, false negative and false positive rates. Notably, it classifies well both major (legitimate) and minor (spam) classes.

Popis

Klíčová slova

Spam filter, Email, Sms, Neural network, Regularization, Rectified linear unit, Spamový filtr, Email, Sms, neuronová síť, regularizace, rektifikovaná lineární jednotka

Citace

Permanentní identifikátor

Endorsement

Review

Supplemented By

Referenced By