Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
Nonlinearity in forecasting energy commodity prices: Evidence from a focused time-delayed neural network

Článekopen accesspeer-reviewedpublished
Načítá se...
Náhled

Datum

Autoři

Bouteska, Ahmed
Hájek, Petr
Fisher, Ben
Abedin, Mohammad Zoynul

Název časopisu

ISSN časopisu

Název svazku

Nakladatel

Elsevier Science BV

Výzkumné projekty

Organizační jednotky

Číslo časopisu

Abstrakt

This paper aims to develop an artificial neural network-based forecasting model employing a nonlinear focused time-delayed neural network (FTDNN) for energy commodity market forecasts. To validate the proposed model, crude oil and natural gas prices are used for the period 2007-2020, including the Covid-19 period. Empirical findings show that the FTDNN model outperforms existing baselines and artificial neural network-based models in forecasting West Texas Intermediate and Brent crude oil prices and National Balancing Point and Henry Hub natural gas prices. As a result, we demonstrate the predictability of energy commodity prices during the volatile crisis period, which is attributed to the flexibility of the model parameters, implying that our study can facilitate a better understanding of the dynamics of commodity prices in the energy market.

Popis

Klíčová slova

Energy market, Natural gas, Crude oil, Nonlinear focused time-delayed neural network, Energetický trh, zemní plyn, ropa, nelineární neuronová síť s časovým zpožděním

Citace

Permanentní identifikátor

Endorsement

Review

Supplemented By

Referenced By