Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
Evaluating automatic sentence alignment approaches on English-Slovak sentences

Článekopen accesspeer-reviewedpublished
Načítá se...
Náhled

Datum

Autoři

Forgac, Frantisek
Munkova, Dasa
Munk, Michal
Kelebercova, Livia

Název časopisu

ISSN časopisu

Název svazku

Nakladatel

Výzkumné projekty

Organizační jednotky

Číslo časopisu

Abstrakt

Parallel texts represent a very valuable resource in many applications of natural language processing. The fundamental step in creating parallel corpus is the alignment. Sentence alignment is the issue of finding correspondence between source sentences and their equivalent translations in the target text. A number of automatic sentence alignment approaches were proposed including neural networks, which can be divided into length-based, lexicon-based, and translation-based. In our study, we used five different aligners, namely Bilingual sentence aligner (BSA), Hunalign, Bleualign, Vecalign, and Bertalign. We evaluated both, the performance of the Bertalign in terms of accuracy against the up to now employed aligners as well as among each other in the language pair English-Sovak. We created our custom corpus consisting of texts collected in 2021 and 2022. Vecalign and Bertalign performed statistically significantly best and BSA the worst. Hunalign and Bleualign achieved the same performance in terms of F1 score. However, Bleualign achieved the most diverse results in terms of performance.

Popis

Klíčová slova

Language, Natural Language Processing, Neural Networks, Computer, Slovakia, Jazyk, Zpracování přirozeného jazyka, Neuronové sítě, počítače, Slovensko

Citace

Permanentní identifikátor

Endorsement

Review

Supplemented By

Referenced By