Digitální knihovna UPCE přechází na novou verzi. Omluvte prosím případné komplikace. / The UPCE Digital Library is migrating to a new version. We apologize for any inconvenience.

Publikace:
Intuitionistic fuzzy neural network for time series forecasting - The case of metal prices

Konferenční objektopen accesspeer-reviewedpostprint (accepted version)
Načítá se...
Náhled

Datum

Autoři

Hájek, Petr
Olej, Vladimír
Froelich, Wojciech
Novotný, Josef

Název časopisu

ISSN časopisu

Název svazku

Nakladatel

Springer Nature Switzerland AG

Výzkumné projekty

Organizační jednotky

Číslo časopisu

Abstrakt

Forecasting time series is an important problem addressed for years. Despite that, it still raises an active interest of researchers. The main issue related to that problem is the inherent uncertainty in data which is hard to be represented in the form of a forecasting model. To solve that issue, a fuzzy model of time series was proposed. Recent developments of that model extend the level of uncertainty involved in data using intuitionistic fuzzy sets. It is, however, worth noting that additional fuzziness exhibits nonlinear behavior. To cope with that issue, we propose a time series model that represents both high uncertainty and non-linearity involved in the data. Specifically, we propose a forecasting model integrating intuitionistic fuzzy sets with neural networks for predicting metal prices. We validate our approach using five financial multivariate time series. The results are compared with those produced by state-of-the-art fuzzy time series models. Thus, we provide solid evidence of high effectiveness of our approach for both one- and five-day-ahead forecasting horizons.

Popis

Klíčová slova

fuzzy neural network, fuzzy time series, intuitionistic fuzzy sets

Citace

Permanentní identifikátor

Endorsement

Review

Supplemented By

Referenced By