ALD SnO2 coated anodic 1D TiO2 nanotube layers for low concentration NO2 sensing

Zobrazit minimální záznam

dc.contributor.author Ng, Siowwoon
dc.contributor.author Prášek, Jan
dc.contributor.author Zazpe, Raul
dc.contributor.author Pytlíček, Zdeněk
dc.contributor.author Spotz, Zdenek
dc.contributor.author Rodriguez Pereira, Jhonatan
dc.contributor.author Michalička, Jan
dc.contributor.author Přikryl, Jan
dc.contributor.author Krbal, Miloš
dc.contributor.author Sopha, Hanna
dc.contributor.author Hubálek, Jaromír
dc.contributor.author Macák, Jan
dc.date.accessioned 2020-11-16T10:04:40Z
dc.date.available 2020-11-16T10:04:40Z
dc.date.issued 2020-06-26
dc.identifier.issn 1944-8244
dc.identifier.uri https://hdl.handle.net/10195/76768
dc.description.abstract The continuous emission of nitrous oxides contributes to the overall air pollution and deterioration of air quality. In particular, an effective NO2 sensor capable of low concentration detection for continuous monitoring is demanded for safety, health, and wellbeing. The sensing performance of a metal oxide based sensor is predominantly influenced by the availability of surface area for O2 adsorption and desorption, efficient charge transport and size or thickness of the sensing layer. In this study, we utilized anodic one-dimensional (1D) TiO2 nanotube layers of 5 µm thick which offer large surface area and unidirectional electron transport pathway as a platform to accommodate thin SnO2 coatings as a sensing layer. Conformal and homogeneous SnO2 coatings across the entire inner and outer TiO2 nanotubes were achieved by atomic layer deposition with controlled thickness of 4, 8 and 16 nm. The SnO2 coated TiO2 nanotube layers attained a higher sensing response than a reference Figaro SnO2 sensor. Specifically, the 8 nm SnO2 coated TiO2 nanotube layer has recorded up to ten-fold enhancement in response as compared to the blank nanotubes for the detection of 1 ppm NO2 at the operating temperature of 300 oC with 0.5 V applied bias. This is attributed to the SnO2/TiO2 heterojunction effect and controlled SnO2 thickness within the range of the Debye length. We demonstrated in this work, a tailored large surface area platform based on 1D nanotubes with thin active coatings as an efficient approach for sensing applications and beyond. en
dc.language.iso en
dc.relation.ispartof ACS Applied Materials and Interfaces, vol. 12, iss. 29, 22 July 2020 en
dc.rights Attribution-NonCommercial-NoDerivs 3.0 Czech Republic *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/cz/ *
dc.subject gas sensing en
dc.subject functional coatings en
dc.subject TiO2 nanotubes en
dc.subject atomic layer deposition en
dc.subject surface and interface en
dc.title ALD SnO2 coated anodic 1D TiO2 nanotube layers for low concentration NO2 sensing en
dc.type Article en
dc.peerreviewed yes en
dc.publicationstatus accepted version en
dc.identifier.doi 10.1021/acsami.0c07791
dc.relation.publisherversion https://pubs.acs.org/doi/abs/10.1021/acsami.0c07791
dc.project.ID EC/H2020/638857/EU/Towards New Generation of Solid-State Photovoltaic Cell: Harvesting Nanotubular Titania and Hybrid Chromophores/CHROMTISOL en


K tomuto záznamu jsou přiřazeny následující licenční soubory:

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

Attribution-NonCommercial-NoDerivs 3.0 Czech Republic Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution-NonCommercial-NoDerivs 3.0 Czech Republic

Vyhledávání


Rozšířené hledání

Procházet

Můj účet